首页 > 中学数学试题 > 题目详情
如果项数均为n(n≥2,n∈N+)的两个数列{an},{bn}满足ak-bk=k(1,2,…,n),且集合{a1,a2,
题目内容:
如果项数均为n(n≥2,n∈N+)的两个数列{an},{bn}满足ak-bk=k(1,2,…,n),且集合{a1,a2,…,an,b1,b2,…,bn}={1,2,3,…,2n},则称数列{an},{bn}是一对“n项相关数列”.
(Ⅰ)设{an},{bn}是一对“4项相关数列”,求a1+a2+a3+a4和b1+b2+b3+b4的值,并写出一对“4项相关数列”{an},{bn};
(Ⅱ)是否存在“15项相关数列”{an},{bn}?若存在,试写出一对{an},{bn};若不存在,请说明理由;
(Ⅲ)对于确定的n,若存在“n项相关数列”,试证明符合条件的“n项相关数列”有偶数对.
如果项数均为n(n≥2,n∈N+)的两个数列{an},{bn}满足ak-bk=k(1,2,…,n),且集合{a1,a2,…,an,b1,b2,…,bn}={1,2,3,…,2n},则称数列{an},{bn}是一对“n项相关数列”.
(Ⅰ)设{an},{bn}是一对“4项相关数列”,求a1+a2+a3+a4和b1+b2+b3+b4的值,并写出一对“4项相关数列”{an},{bn};
(Ⅱ)是否存在“15项相关数列”{an},{bn}?若存在,试写出一对{an},{bn};若不存在,请说明理由;
(Ⅲ)对于确定的n,若存在“n项相关数列”,试证明符合条件的“n项相关数列”有偶数对.
(Ⅰ)设{an},{bn}是一对“4项相关数列”,求a1+a2+a3+a4和b1+b2+b3+b4的值,并写出一对“4项相关数列”{an},{bn};
(Ⅱ)是否存在“15项相关数列”{an},{bn}?若存在,试写出一对{an},{bn};若不存在,请说明理由;
(Ⅲ)对于确定的n,若存在“n项相关数列”,试证明符合条件的“n项相关数列”有偶数对.
本题链接: