王老师
回答题目:2621条
无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环.常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等.无理数的另一特征是无限的连分数表达式.
1、把有理数和无理数都写成小数形式时,有理数能写成整数、小数或无限循环小数,比如4=4.0,4/5=0.8,1/3=0.33333……而无理数只能写成无限不循环小数,
比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数.
2、无理数不能写成两整数之比,举例不对,1分之根号2,根号2本身就不是整数.
利用有理数和无理数的主要区别,可以证明√2是无理数.
证明:假设√2不是无理数,而是有理数.
既然√2是有理数,它必然可以写成两个整数之比的形式:
√2=p/q
又由于p和q没有公因数可以约去,所以可以认为p/q 为最简分数,即最简分数形式.
把 √2=p/q 两边平方
得 2=(p^2)/(q^2)
即 2(q^2)=p^2
由于2q^2是偶数,p 必定为偶数,设p=2m
由 2(q^2)=4(m^2)
得 q^2=2m^2
同理q必然也为偶数,设q=2n
既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是最简分数矛盾.这个矛盾是由假设√2是有理数引起的.因此√2是无理数.
1.判断a√b是否无理数(a,b是整数)
若a√b是有理数,它必然可以写成两个整数之比的形式:
a√b=c/d(c/d是最简分数)
两边a次方得b=c^a/d^a 即c^a=b*(d^a) c^a一定是b的整数倍,设c^a=b^n*p 同理b*(d^a) 必然也为b的整数倍,设b*(d^a)=b*(b^m*q).其中p和q都不是b的整数倍
左边b的因子数是a的倍数,要想等式成立,右边b的因子数必是a的倍数,推出当且仅当b是完全a次方数,a√b才是有理数,否则为无理数.