首页 > 中学数学试题 > 题目详情

设f(x)是闭区间[0,1]上连续函数,且f(x)=1/(1+x^2)+x^3∫f(t)dt∫f(t)dt是定积分,上限是1,下限是0,求定积分∫f(x)dx,上限,下限仍是1和0

本题链接: