首页 > 中学数学试题 > 题目详情
y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,yz+zx+xy=0.证明:(a+b+c)(a+b-c)(a
题目内容:
y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,yz+zx+xy=0.证明:(a+b+c)(a+b-c)(a-b+c)(a-b-c)=10
y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=10
这么做对吗.
y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,yz+zx+xy=0.证明:(a+b+c)(a+b-c)(a-b+c)(a-b-c)=10
y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=10
这么做对吗.
y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=10
这么做对吗.
本题链接: