首页 > 中学数学试题 > 题目详情
定义:长宽比为:1(n为正整数)的矩形称为矩形. (1)如图1所示,将一张矩形纸片ABCD进行如下操作:将点C沿着过点D的直线折叠,使折叠后的点C落在边AD上的点E处,折痕为DF,通过测量发现DF=A...
题目内容:
定义:长宽比为:1(n为正整数)的矩形称为矩形.
(1)如图1所示,将一张矩形纸片ABCD进行如下操作:将点C沿着过点D的直线折叠,使折叠后的点C落在边AD上的点E处,折痕为DF,通过测量发现DF=AD,则矩形ABCD是矩形吗?请说明理由.
(2)我们可以通过折叠的方式折出一个矩形,如图2所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.所得四边形BCEF为矩形,请说明理由.
本题链接: