首页 > 中学数学试题 > 题目详情
阅读下面材料:解答问题 为解方程(x2-1)2-5(x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设x2-1=y,那么原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,...
题目内容:
阅读下面材料:解答问题
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设x2-1=y,那么原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,故原方程的解为x1=,x2=-,x3=,x4=-.
上述解题方法叫做换元法;请利用换元法解方程.(x2-x)2-4(x2-x)-12=0.
本题链接: