首页 > 中学数学试题 > 题目详情
(2015秋•夏津县期末)先仔细阅读材料,再尝试解决问题: 完全平方公式x2±2xy+y2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x2+12x﹣4的...
题目内容:
(2015秋•夏津县期末)先仔细阅读材料,再尝试解决问题:
完全平方公式x2±2xy+y2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x2+12x﹣4的最大(小)值时,我们可以这样处理:
【解析】
原式=2(x2+6x﹣2)
=2(x2+6x+9﹣9﹣2)
=2[(x+3)2﹣11]
=2(x+3)2﹣22
因为无论x取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,此时x=﹣3,进而2(x+3)2﹣22的最小值是2×0﹣22=﹣22,所以当x=﹣3时,原多项式的最小值是﹣22
解决问题:
请根据上面的解题思路,探求
(1)多项式3x2﹣6x+12的最小值是多少,并写出对应的x的取值.
(2)多项式﹣x2﹣2x+8的最大值是多少,并写出对应的x的取值.
本题链接: