首页 > 中学数学试题 > 题目详情
(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线. 试说明∠D=90°+∠A的理由. 【解析】 因为BD平分∠ABC(已知), 所以∠1= (角平分线定义). 同理:...
题目内容:
(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.
试说明∠D=90°+∠A的理由.
【解析】
因为BD平分∠ABC(已知),
所以∠1= (角平分线定义).
同理:∠2= .
因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,( ),
所以∠D = (等式性质).
即:∠D=90°+∠A.
(2)探究,请直接写出结果,并任选一种情况说明理由:
(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D与∠A之间的等量关系.
答:∠D与∠A之间的等量关系是 .
(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.
答:∠D与∠A之间的等量关系是 .
本题链接: