首页 > 中学数学试题 > 题目详情
如图,在Rt△OAB中,∠A=90°,OA=4,AB=3,动点M从点A出发,动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒个单位长度的速度,沿OB向终点B移...
题目内容:
如图,在Rt△OAB中,∠A=90°,OA=4,AB=3,动点M从点A出发,动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒个单位长度的速度,沿OB向终点B移动.设运动时间为t秒.
(1)用含t的代数式表示点N到OA的距离;
(2)设△OMN的面积是S,求S与t之间的函数表达式;当t为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.
本题链接: