首页 > 中学数学试题 > 题目详情
在直角梯形ABCD中,∠D=90°,高CD=cm(如图1),动点P、Q同时从点A出发,点P沿AB、BC运动到点C停止,速度为1cm/s,点Q沿AD运动到点D停止,速度为2cm/s,而点P到达点B时,点...
题目内容:
在直角梯形ABCD中,∠D=90°,高CD=cm(如图1),动点P、Q同时从点A出发,点P沿AB、BC运动到点C停止,速度为1cm/s,点Q沿AD运动到点D停止,速度为2cm/s,而点P到达点B时,点Q正好到达点D,设P、Q同时从A点出发的时间为t(s)时,△APQ的面积为y(cm2)所形成的函数图象如图(2)所示,其中MN表示一条平行于X轴的线段.
(1)求出BC的长和点M的坐标.
(2)当点P在线段AB上运动时,直线PQ截梯形所得三角形部分沿PQ向上折叠,设折叠后与梯形重叠部分的面积为S cm2,请求出S与t的函数关系式.
(3)在P、Q的整个运动过程中,将直线PQ截梯形所得三角形部分沿PQ折叠.是否存在某一时刻,使得折叠后与梯形重叠部分的面积为直角梯形ABCD面积的?若存在,求出t的值;若不存在,试说明理由.
本题链接: