首页 > 中学数学试题 > 题目详情
如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM...
题目内容:
如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S△MNC,△ABC的面积为S△ABC.
(1)求证:△MNC是直角三角形;
(2)试求用x表示S△MNC的函数关系式,并写出x的取值范围;
(3)以点N为圆心,NC为半径作⊙N,
①当直线AD与⊙N相切时,试探求S△MNC与S△ABC之间的关系;
②当S△MNC=S△ABC时,试判断直线AD与⊙N的位置关系,并说明理由.
本题链接: