首页 > 中学数学试题 > 题目详情
已知:t1,t2是方程t2+2t-24=0的两个实数根,且t1<t2,抛物线y=x2+bx+c的图象经过点A(t1,0),B(0,t2). (1)求这个抛物线的解析式; (2)设点P(x,y)是抛物线...
题目内容:
已知:t1,t2是方程t2+2t-24=0的两个实数根,且t1<t2,抛物线y=x2+bx+c的图象经过点A(t1,0),B(0,t2).
(1)求这个抛物线的解析式;
(2)设点P(x,y)是抛物线上一动点,且位于第三象限,四边形OPAQ是以OA为对角线的平行四边形,求平行四边形OPAQ的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,当平行四边形OPAQ的面积为24时,是否存在这样的点P,使▱OPAQ为正方形?若存在,求出P点坐标;若不存在,说明理由.
本题链接: