首页 > 中学数学试题 > 题目详情
(10分)如图所示,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以...
题目内容:
(10分)如图所示,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的表达式;
(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=9)2+8(0≤t≤40),当水深h达到6米或6米以上时,需禁止船只通行,请通过计算说明在这一时段内,需多少小时禁止船只通行?
本题链接: