首页 > 中学数学试题 > 题目详情
【问题情境】 已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少? 【数学模型】 设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+ )(x>0). ...
题目内容:
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+ )(x>0).
【探索研究】
小彬借鉴以前研究函数的经验,先探索函数y=x+的图象性质.
(1)结合问题情境,函数y=x+ 的自变量x的取值范围是x>0,下表是y与x的几组对应值.
① 写出m的值;
②画出该函数图象,结合图象,得出当x=________时,y有最小值,y最小=________;
提示:在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.试用配方法求函数y=x+ (x>0)的最小值,解决问题(2).
(2)【解决问题】
直接写出“问题情境”中问题的结论.
本题链接: