首页 > 中学数学试题 > 题目详情
方程lg2X/lg(x+a)=2,问a为何值时,方程有一解?整理:lg2x=2lg(x+a)2x=(x+a)^2得:x^
题目内容:
方程lg2X/lg(x+a)=2,问a为何值时,方程有一解?
整理:
lg2x=2lg(x+a)
2x=(x+a)^2
得:
x^2+2(a-1)x+a^2=0
且2x>0,x+a>0,
对于以上一元二次方程,△=4[(a-1)^2]-4(a^2)=-8a+4,
分三种情况:
①当△>0时,-8a+4>0,a<1/2
此时,方程有两解,
x={2-2a±[根号(4-8a)}/2=1-a±[根号(1-2a)]
此时x=(1-a)+[根号(1-2a)]>0显然成立(正数加正数);
对于x=(1-a)-[根号(1-2a)],由于(1-a)^2-(1-2a)=1-2a+a^2-1+2a=a^2>0,所以,x=1-a-[根号(1-2a)]>0也成立.
但是,由于要求x+a>0,
所以,当a<1/2且x+a>0时,原方程有两解.
②当△=0,a=1/2
此时,方程为x^2-x+1/4=0,解得唯一解x=1/2
但是代入原方程可知此时分母为0,无意义
所以x=1/2不合题意,舍去,所以,a=1/2时原方程无解.
③当△<0,a>1/2时,原方程无解.
综上,
(1)当a<1/2时,方程有两解;
(2)不存在a使方程有一解;
(3)当a≥1/2时,方程无解.我的疑惑是:1,由于(1-a)^2-(1-2a)=1-2a+a^2-1+2a=a^2>0,怎么得到x=1-a-[根号(1-2a)]>0也成立.
2,“所以,当a<1/2且x+a>0时,原方程有两解.”为什么是这样?由2x>0可得x>0,x+a>0,得a>-x,为什么不求-x的最大值再结合a0和2x>0,即x>0,a>-x,
是不是还应该求-x的最大值,然后来求a的取值范围,即便求不出,是不是也应满足a>-x呢?为什么只是a>1/2?
方程lg2X/lg(x+a)=2,问a为何值时,方程有一解?
整理:
lg2x=2lg(x+a)
2x=(x+a)^2
得:
x^2+2(a-1)x+a^2=0
且2x>0,x+a>0,
对于以上一元二次方程,△=4[(a-1)^2]-4(a^2)=-8a+4,
分三种情况:
①当△>0时,-8a+4>0,a<1/2
此时,方程有两解,
x={2-2a±[根号(4-8a)}/2=1-a±[根号(1-2a)]
此时x=(1-a)+[根号(1-2a)]>0显然成立(正数加正数);
对于x=(1-a)-[根号(1-2a)],由于(1-a)^2-(1-2a)=1-2a+a^2-1+2a=a^2>0,所以,x=1-a-[根号(1-2a)]>0也成立.
但是,由于要求x+a>0,
所以,当a<1/2且x+a>0时,原方程有两解.
②当△=0,a=1/2
此时,方程为x^2-x+1/4=0,解得唯一解x=1/2
但是代入原方程可知此时分母为0,无意义
所以x=1/2不合题意,舍去,所以,a=1/2时原方程无解.
③当△<0,a>1/2时,原方程无解.
综上,
(1)当a<1/2时,方程有两解;
(2)不存在a使方程有一解;
(3)当a≥1/2时,方程无解.我的疑惑是:1,由于(1-a)^2-(1-2a)=1-2a+a^2-1+2a=a^2>0,怎么得到x=1-a-[根号(1-2a)]>0也成立.
2,“所以,当a<1/2且x+a>0时,原方程有两解.”为什么是这样?由2x>0可得x>0,x+a>0,得a>-x,为什么不求-x的最大值再结合a0和2x>0,即x>0,a>-x,
是不是还应该求-x的最大值,然后来求a的取值范围,即便求不出,是不是也应满足a>-x呢?为什么只是a>1/2?
整理:
lg2x=2lg(x+a)
2x=(x+a)^2
得:
x^2+2(a-1)x+a^2=0
且2x>0,x+a>0,
对于以上一元二次方程,△=4[(a-1)^2]-4(a^2)=-8a+4,
分三种情况:
①当△>0时,-8a+4>0,a<1/2
此时,方程有两解,
x={2-2a±[根号(4-8a)}/2=1-a±[根号(1-2a)]
此时x=(1-a)+[根号(1-2a)]>0显然成立(正数加正数);
对于x=(1-a)-[根号(1-2a)],由于(1-a)^2-(1-2a)=1-2a+a^2-1+2a=a^2>0,所以,x=1-a-[根号(1-2a)]>0也成立.
但是,由于要求x+a>0,
所以,当a<1/2且x+a>0时,原方程有两解.
②当△=0,a=1/2
此时,方程为x^2-x+1/4=0,解得唯一解x=1/2
但是代入原方程可知此时分母为0,无意义
所以x=1/2不合题意,舍去,所以,a=1/2时原方程无解.
③当△<0,a>1/2时,原方程无解.
综上,
(1)当a<1/2时,方程有两解;
(2)不存在a使方程有一解;
(3)当a≥1/2时,方程无解.我的疑惑是:1,由于(1-a)^2-(1-2a)=1-2a+a^2-1+2a=a^2>0,怎么得到x=1-a-[根号(1-2a)]>0也成立.
2,“所以,当a<1/2且x+a>0时,原方程有两解.”为什么是这样?由2x>0可得x>0,x+a>0,得a>-x,为什么不求-x的最大值再结合a0和2x>0,即x>0,a>-x,
是不是还应该求-x的最大值,然后来求a的取值范围,即便求不出,是不是也应满足a>-x呢?为什么只是a>1/2?
本题链接: