首页 > 中学数学试题 > 题目详情
一直线L过点P(1,4),且分别交X轴Y轴正半轴于AB,求(1)它在两轴的截距之和最小时L的方程(2)它于两轴所围的直角
题目内容:
一直线L过点P(1,4),且分别交X轴Y轴正半轴于AB,求(1)它在两轴的截距之和最小时L的方程(2)它于两轴所围的直角ΔAOB面积最小时L的方程
答案是用斜率表示出PA*PB和PA+PB的,再利用重要不等式.
但是为什么不能直接设A和B的坐标,A(a,o) B(0,b) 得出a和b的关系,再利用重要不等式?
第一问用设坐标的方法算出来和答案一样都是8.但是第二问正确答案是9我算的是10
请不要再给我解答过程了,我只是想知道为什么两种方法算出来不一样
一直线L过点P(1,4),且分别交X轴Y轴正半轴于AB,求(1)它在两轴的截距之和最小时L的方程(2)它于两轴所围的直角ΔAOB面积最小时L的方程
答案是用斜率表示出PA*PB和PA+PB的,再利用重要不等式.
但是为什么不能直接设A和B的坐标,A(a,o) B(0,b) 得出a和b的关系,再利用重要不等式?
第一问用设坐标的方法算出来和答案一样都是8.但是第二问正确答案是9我算的是10
请不要再给我解答过程了,我只是想知道为什么两种方法算出来不一样
答案是用斜率表示出PA*PB和PA+PB的,再利用重要不等式.
但是为什么不能直接设A和B的坐标,A(a,o) B(0,b) 得出a和b的关系,再利用重要不等式?
第一问用设坐标的方法算出来和答案一样都是8.但是第二问正确答案是9我算的是10
请不要再给我解答过程了,我只是想知道为什么两种方法算出来不一样
本题链接: