首页 > 中学数学试题 > 题目详情
在△ABC中,2sin²A=3sin²B+3sin²C,并且cos2A+3cosA+3(B
题目内容:
在△ABC中,2sin²A=3sin²B+3sin²C,并且cos2A+3cosA+3(B-C)=1,求三角形的三边之比
∵2sin²A=3sin²+3sin²C,又A=π-(B-C),∴cosA=cos{π-(B+C)}=-cos(B+C)∴cos2A+3cosA+3cos(B-C)=1-2sin²A+3{cos(B-C)-cos(B-C)},请问下为什么∴cos2A+3cosA+3cos(B-C)会=1-2sin²A+3{cos(B-C)-cos(B-C)}?
在△ABC中,2sin²A=3sin²B+3sin²C,并且cos2A+3cosA+3(B-C)=1,求三角形的三边之比
∵2sin²A=3sin²+3sin²C,又A=π-(B-C),∴cosA=cos{π-(B+C)}=-cos(B+C)∴cos2A+3cosA+3cos(B-C)=1-2sin²A+3{cos(B-C)-cos(B-C)},请问下为什么∴cos2A+3cosA+3cos(B-C)会=1-2sin²A+3{cos(B-C)-cos(B-C)}?
∵2sin²A=3sin²+3sin²C,又A=π-(B-C),∴cosA=cos{π-(B+C)}=-cos(B+C)∴cos2A+3cosA+3cos(B-C)=1-2sin²A+3{cos(B-C)-cos(B-C)},请问下为什么∴cos2A+3cosA+3cos(B-C)会=1-2sin²A+3{cos(B-C)-cos(B-C)}?
本题链接: