证明:g〔x〕=x²+ax+b,则g〔〔x1+X2〕/2〕≤〔g〔x1〕+g〔x2〕〕/2证明:若g〔x〕=x²+ax+b,则g〔〔x1+X2〕/2〕≤〔g〔x1〕+g〔x2〕〕/2
2022-08-02 12:59:59 19次 反馈错误 加入收藏 正确率 : 100%
题目内容:
证明:g〔x〕=x²+ax+b,则g〔〔x1+X2〕/2〕≤〔g〔x1〕+g〔x2〕〕/2
证明:若g〔x〕=x²+ax+b,则g〔〔x1+X2〕/2〕≤〔g〔x1〕+g〔x2〕〕/2
本题链接: