首页 > 中学数学试题 > 题目详情
结果如此巧合! 下面是小颖对一道题目的解答. 题目:如图,的内切圆与斜边相切于点,,,求的面积. 【解析】 设的内切圆分别与、相切于点、,的长为. 根据切线长定理,得,,. 根据勾股定理,得. 整理,...
题目内容:
结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,的内切圆与斜边相切于点,,,求的面积.
【解析】
设的内切圆分别与、相切于点、,的长为.
根据切线长定理,得,,.
根据勾股定理,得.
整理,得.
所以
.
小颖发现恰好就是,即的面积等于与的积.这仅仅是巧合吗?
请你帮她完成下面的探索.
已知:的内切圆与相切于点,,.
可以一般化吗?
(1)若,求证:的面积等于.
倒过来思考呢?
(2)若,求证.改变一下条件……
(3)若,用、表示的面积.
本题链接: