首页 > 中学数学试题 > 题目详情
(题文)直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=-AB.请你利用该定理和以前学过的知识...
题目内容:
(题文)直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=-AB.请你利用该定理和以前学过的知识解决下列问题:
在△ABC中,直线绕顶点A旋转.
(1)如图2,若点P为BC边的中点,点B、P在直线的异侧,BM⊥直线于点M,CN⊥直线于点N,连接PM、PN.求证:PM=PN;
(2)如图3,若点B、P在直线的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)如图4,∠BAC=90°,直线旋转到与BC垂直的位置,E为AB上一点且AE=AC,EN⊥于N,连接EC,取EC中点P,连接PM、PN,求证:PM⊥PN.
本题链接: