首页 > 中学数学试题 > 题目详情
(问题背景) 在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所...
题目内容:
(问题背景)
在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).
(发现)
如图1,当n=1时,易证得AE+AF=AC;
(类比)
如图2,过点C作CH⊥AD于点H,
(1)当n=2时,求证:AE=2FH;
(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;
(延伸)
将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ之间的等量关系式(请直接写出结论).
本题链接: