首页 > 中学数学试题 > 题目详情
综合与实践 美妙的黄金矩形 阅读理解 在数学上称短边与长边的比是(约为0.618)的矩形叫做黄金矩形(GoldenRectangle),黄金矩形蕴藏着丰富的美学价值,给我们以协调、匀称的美感. (1)...
题目内容:
综合与实践 美妙的黄金矩形
阅读理解
在数学上称短边与长边的比是(约为0.618)的矩形叫做黄金矩形(GoldenRectangle),黄金矩形蕴藏着丰富的美学价值,给我们以协调、匀称的美感.
(1)某校团委举办“五•四手抄报比赛”,手抄报规格统一设计成:长是40cm的黄金矩形,则宽约为__________cm;(精确到0.1cm)
操作发现 利用一张正方形纸片折叠出一个黄金矩形.
第一步,如图1,折叠正方形纸片ABCD,使AB和DC重合,得到折痕EF(点E,F分别在边AD,BC上),然后把纸片展平.
第二步,如图2,折叠正方形纸片ABCD,使得BC落在BE上,点C′和点C对应,得到折痕BG(点G在CD上),再次纸片展平.
第三步,如图3,沿过点G的直线折叠正方形纸片ABCD,使点A和点D分别落在AB和CD上,折痕为HG,显然四边形HBCG为矩形.
(2)在上述操作中,以AB=2为例,证明矩形HBCG是黄金矩形.
(参考计算: =)
拓广探索
(3)“希望小组”的同学通过探究发现:以黄金矩形的长边为一边,在原黄金矩形外作正方形,得到的新矩形仍然是黄金矩形.
如图4,如果四边形ABCD是黄金矩形(AB>AD),四边形DCEF是正方形,那么四边形ABEF也是黄金矩形,他们的发现正确吗?请说明理由.
本题链接: