首页 > 中学数学试题 > 题目详情
已知∠AOB=45°,求作∠AOP=22.5°,作法: (1)以O为圆心,任意长为半径画弧分别交OA,OB于点N,M; (2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P; (3)作射线O...
题目内容:
已知∠AOB=45°,求作∠AOP=22.5°,作法:
(1)以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;
(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;
(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°
根据以上作法,某同学有以下3种证明思路:
①可证明△OPN≌△OPM,得∠POA=∠POB,可得;
②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;
③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得.
你认为该同学以上3种证明思路中,正确的有( )
A. ①② B. ①③ C. ②③ D. ①②③
本题链接: