首页 > 中学数学试题 > 题目详情
在平面直角坐标系xOy中,中心为点C正方形的各边分别与两坐标轴平行,若点P是与C不重合的点,点P关于正方形的仿射点Q的定义如下:设射线CP交正方形的边于点M,若射线CP上存在一点Q,满足CP+CQ=2...
题目内容:
在平面直角坐标系xOy中,中心为点C正方形的各边分别与两坐标轴平行,若点P是与C不重合的点,点P关于正方形的仿射点Q的定义如下:设射线CP交正方形的边于点M,若射线CP上存在一点Q,满足CP+CQ=2CM,则称Q为点P关于正方形的仿射点如图为点P关于正方形的仿射点Q的示意图.
特别地,当点P与中心C重合时,规定CP=0.
(1)当正方形的中心为原点O,边长为2时.
①分别判断点F(2,0),G(,),H(3,3)关于该正方形的仿射点是否存在?若存在,直接写出其仿射点的坐标;
②若点P在直线y=﹣x+3上,且点P关于该正方形的仿射点Q存在,求点P的横坐标的取值范围;
(2)若正方形的中心C在x轴上,边长为2,直线y=与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于该正方形的仿射点Q在正方形的内部,直接写出正方形的中心C的横坐标的取值范围.
本题链接: