首页 > 中学数学试题 > 题目详情
(给出定义) 若四边形的一条对角线能将四边形分割成两个相似的直角三角形,那么我们将这种四边形叫做“跳跃四边形”,这条对角线叫做“跳跃线”. (理解概念) (1)命题“凡是矩形都是跳跃四边形”是什么命题...
题目内容:
(给出定义)
若四边形的一条对角线能将四边形分割成两个相似的直角三角形,那么我们将这种四边形叫做“跳跃四边形”,这条对角线叫做“跳跃线”.
(理解概念)
(1)命题“凡是矩形都是跳跃四边形”是什么命题(“真”或“假”).
(2)四边形ABCD为“跳跃四边形”,且对角线AC为“跳跃线”,其中AC⊥CB,∠B=30°,AB=4,求四边形ABCD的周长.
(实际应用)已知抛物线y=ax2+m(a≠0)与x轴交于B(﹣2,0),C两点,与直线y=2x+b交于A,B两点.
(3)直接写出C点坐标,并求出抛物线的解析式.
(4)在线段AB上有一个点P,在射线BC上有一个点Q,P,Q两点分别以个单位/秒,5个单位/秒的速度同时从B出发,沿BA,BC方向运动,设运动时间为t,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M,使得四边形BQMP是以PQ为“跳跃线”的“跳跃四边形”,若存在,请直接写出t的值;若不存在,请说明理由.
本题链接: