首页 > 中学数学试题 > 题目详情
如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点. (1)求该抛物线的解析式; (2)阅读理【解析】 在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k...
题目内容:
如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
(1)求该抛物线的解析式;
(2)阅读理【解析】
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
解决问题:
①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.
本题链接: